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Unsupervised Learning

 Unsupervised vs Supervised Learning:

 Most of this course focuses on supervised learning methods such as regression and 

classification

 In that setting we observe both a set of features 𝑋1, 𝑋2, … , 𝑋𝑝 for each object, as well as a 

response or outcome variable 𝑌. The goal is then to predict 𝑌 using 𝑋1, 𝑋2, … , 𝑋𝑝

 Here we instead focus on unsupervised learning, we where observe only the features 

𝑋1, 𝑋2, … , 𝑋𝑝. We are not interested in prediction, because we do not have an associated 

response variable 𝑌
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Advantages

 It is often easier to obtain unlabeled data - from a lab instrument or a computer 

- than labeled data, which can require human intervention

 Prepare labeling manuals, categories, hiring humans, creating GUIs, storage pipelines, etc.

 Sometimes it is also hard to label the data. For example it is difficult to 

automatically assess the overall sentiment of a movie review: is it favorable or 

not?

 Cognitive motivation: How animals / babies learn
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“The brain has about 1014synapses and we only live for about 

109 seconds. So we have a lot more parameters than data. This 

motivates the idea that we must do a lot of unsupervised 

learning” - Geoffrey Hinton



The Challenge of Unsupervised Learning

 Unsupervised learning is more subjective than supervised learning, as there is 

no simple goal for the analysis, such as prediction of a response

 Unsupervised learning is often performed as part of an exploratory data analysis

 But techniques for unsupervised learning are of growing importance in a 

number of fields:

 Subgroups of cancer patients grouped by their gene expression measurements,

 Groups of shoppers characterized by their browsing and purchase histories,

 Movies grouped by the ratings assigned by movie viewers,

 Search engine based on the click histories of other individuals with similar search patterns
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The Goals of Unsupervised Learning

1. Dimensional reduction: Speedup the training and overcome the curse of 

dimensionality. In addition, reduce the dimension also helps visualization

2. Clustering methods: Great tool for data analysis, recommender systems, 

search engines, image segmentation, semi-supervised learning, 

dimensionality reduction and more

3. Anomaly detection methods: Learn what “normal” data looks like, and use 

this to detect abnormal instances, such as defective items on a production line 

or a new trend in a time series

4. Density estimation methods: Estimating the probability density function 

(PDF) of the dataset. This is commonly used for anomaly detection: instances 

located in very low-density regions are likely to be anomalies. It is also 

useful for data analysis, visualization and generation
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What we would like to address

 We discuss two families of methods:

1. Dimensional reduction and visualization by projection or manifold learning

 Principal components analysis, a tool used for data visualization or data pre-processing 

before supervised techniques are applied, and

 t-SNE, the state-of-the art visualization method that allows you understand the local 

(sometimes global) structure your data

2. Clustering, a broad class of methods for discovering unknown subgroups in 

data

 𝐾-means, the fastest and intuitive algorithm when the number of cluster is not large

 Hierarchical clustering, a fast and powerful clustering algorithm when the number of 

cluster is large

 DBSCAN (or HDBSCAN), one of the state-of-the art clustering algorithm for EDA 
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Dimensional reduction by linear projection

 In most real-world problems, training instances are not spread out uniformly 

across all dimensions. Many features are almost constant, while others are 

highly correlated As a result, all training instances actually lie within much 

lower-dimensional subspace of the high-dimensional space

 Dimensionality reduction tries to preserve various measure or structure in high dimensional 

space like distance, topology, density etc
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Principal Components Analysis (PCA)

 Suppose that we wish to visualize 𝑛 observations with measurements on a set 

of 𝑝 features, 𝑋1, 𝑋2, … , 𝑋𝑝, as part of an exploratory data analysis

 We could do this by examining two-dimensional scatterplots of the data, each of which 

contains the 𝑛 observations’ measurements on two of the features. However, there are 
𝑝
2

such scatterplots

 Most likely none of them will be informative since they each contain just a small fraction 

of the total information present in the data set 

 Clearly, a better method is required to visualize the 𝑛 observations when 𝑝 is 

large. We would like to find a low-dimensional representation of the data that 

captures as much of the information as possible 
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Principal Components Analysis (PCA)

 PCA produces a low-dimensional representation of a dataset. It finds a 

sequence of linear combinations of the variables that have maximal variance

 The information is measured by the amount that the observations vary along each dimension

 Apart from producing derived variables for use in supervised learning problems, PCA also 

serves as a tool for data visualization

9 https://towardsdatascience.com/visualising-high-dimensional-datasets-using-pca-and-t-sne-in-python-8ef87e7915b
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Principal Components Analysis: details

 The first principal component score of a set of features 𝑋1, 𝑋2, … , 𝑋𝑝 is the 

normalized linear combination of the features
𝑍1 = Φ11𝑋1 +Φ21𝑋2 +⋯+Φ𝑝1𝑋𝑝

that has the largest variance

 We refer to the elements Φ11, … ,Φ𝑝1 as the loadings of the first principal component; 

together, the loadings make up the principal component, Φ1 = (Φ11Φ21…Φ𝑝1)
𝑇

 By normalized, we mean that σ𝑗=1
𝑝

Φ𝑗1
2 = 1, . since otherwise setting these elements to be 

arbitrarily large in absolute value could result in an arbitrarily large variance

 For a dataset that have been centered, we look for the linear combination of 
𝑧𝑖1 = Φ11𝑥𝑖1 +Φ21𝑥𝑖2 +⋯+Φ𝑝1𝑥𝑖𝑝

for 𝑖 = 1,… , 𝑛 that has largest sample variance, subject to the constraint that 

σ𝑗=1
𝑝

Φ𝑗1
2 = 1
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Principal Components Analysis: details

 The sample variance of the 𝑧𝑖1 can be written as
1

𝑛
σ𝑖=1
𝑛 𝑧𝑖1

2 =
1

𝑛
σ𝑖=1
𝑛 (σ𝑗=1

𝑝
Φ𝑗1𝑥𝑖𝑗)

2

 The first principal component loading vector solves the optimization problem

max
Φ11,…,Φ𝑝1

1

𝑛
σ𝑖=1
𝑛 (σ𝑗=1

𝑝
Φ𝑗1𝑥𝑖𝑗)

2 subject to σ𝑗=1
𝑝

Φ𝑗1
2 = 1

 This problem can be solved via a singular-value decomposition of the data matrix 𝑋 or the 

eigenvalue decomposition of the covariance matrix 𝑋

 The loading vector Φ1 with elements Φ11Φ21…Φp1 denfies a direction in feature 

space along which the data vary the most

 If we project the 𝑛 data points 𝑥1, 𝑥2, … , 𝑥𝑛 onto this direction, the projected values 

are the principal component scores 𝑧11, … , 𝑧𝑛1 themselves
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Further principal components

 The second principal component is the linear combination of 𝑋1, 𝑋2, … , 𝑋𝑝 that 

has maximal variance among all linear combinations that are uncorrelated with 

𝑍1
 The second principal component scores 𝑧12, … , 𝑧𝑛2 take the form

𝑧𝑖2 = Φ12𝑥𝑖1 +Φ22𝑥𝑖2 +⋯+Φ𝑝2𝑥𝑖𝑝
Where Φ2 is the second principal component loading vector, with elements Φ12Φ22…Φp2

 It turns out that constraining 𝑍2 to be uncorrelated with 𝑍1 is equivalent to 

constraining the direction Φ2 to be orthogonal (perpendicular) to the direction 

Φ1. And so on

 There are at most min(𝑛 − 1, 𝑝) principal components
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https://stats.stackexchange.com/questions/153928/why-are-principal-component-scores-uncorrelated
https://stats.stackexchange.com/questions/123318/why-are-there-only-n-1-principal-components-for-n-data-if-the-number-of-dime


PCA: example

 The population size (pop) and ad spending (ad) for 100 different cities are 

shown as purple circles. The green solid line indicates the first principal 

component direction, and the blue dashed line indicates the second principal 

component direction
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Illustration

 USAarrests data: For each of the 50 states in the United States, the data set 

contains the number of arrests per 100,000 residents for each of three crimes: 

Assault, Murder, and Rape. We also record UrbanPop (the percent of the 

population in each state living in urban areas)

 The principal component score vectors have length 𝑛 = 50, and the principal 

component loading vectors have length 𝑝 = 4

 PCA was performed after standardizing each variable to have mean zero and 

standard deviation one
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USAarrests data: PCA biplot
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Figure details

 The first two principal components for the USArrests data

 The blue state names represent the scores for the first two principal 

components

 The orange arrows indicate the first two principal component loading vectors 

(with axes on the top and right). For example, the loading for Rape on the first 

component is 0.54, and its loading on the second principal component 0.17 [the 

word Rape is centered at the point (0.54; 0.17)]

 This figure is known as a biplot, because it displays both the principal 

component scores and the principal component loadings
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Another Interpretation of Principal Components

 Principal components provide low-dimensional linear surfaces that are 

closest to the observations
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Another Interpretation of Principal Components

 The first principal component loading vector has a very special property: it is 

the line in 𝑝-dimensional space that is closest to the 𝑛 observations (using 

average squared Euclidean distance as a measure of closeness)

 The notion of principal components as the dimensions that are closest to the 𝑛
observations extends beyond just the first principal component

 For instance, the first two principal components of a dataset span the plane that 

is closest to the 𝑛 observations, in terms of average squared Euclidean distance
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Another interpretation of principal components

 The first 𝑀 principal component score vectors and the first 𝑀 principal 

component loading vectors provide the best 𝑀-dimensional approximation (in 

terms of Euclidean distance) to the 𝑖th observation 𝑥𝑖𝑗

𝑥𝑖𝑗 ≈ 

𝑚=1

𝑀

𝑧𝑖𝑚Φ𝑗𝑚

 Suppose the data matrix 𝑋 is column-centered. Out of all approximations of the 

form 𝑥𝑖𝑗 ≈ σ𝑚=1
𝑀 𝑎𝑖𝑚𝑏𝑗𝑚. We have

min
𝐴∈𝑅𝑛×𝑀, 𝐵∈𝑅𝑝×𝑀

{

𝑗=1

𝑝



𝑖=1

𝑛

(𝑥𝑖𝑗 − 

𝑚=1

𝑀

𝑎𝑖𝑚𝑏𝑗𝑚)
2}

 It can be shown that for any value of 𝑀, the columns of the matrices መ𝐴 and 𝐵
are in fact the first 𝑀 principal components score and loading vectors
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More on PCA – Proportion Variance Explained

 We are interested in knowing the proportion of variance explained (PVE) by each 

one. The total variance present in a data set (assuming that the variables have 

been centered to have mean zero) is defined as



𝑗=1

𝑝

𝑉𝑎𝑟(𝑋𝑗) =
𝑗=1

𝑝 1

𝑛


𝑖=1

𝑛

𝑥𝑖𝑗
2 ,

and the variance explained by the 𝑚th principal component is

𝑉𝑎𝑟 𝑍𝑚 =
1

𝑛


𝑖=1

𝑛

𝑧𝑖𝑚
2 =

1

𝑛


𝑖=1

𝑛

(
𝑗=1

𝑝

Φ𝑗𝑚𝑥𝑖𝑗)
2

 It can be shown that σ𝑗=1
𝑝

𝑉𝑎𝑟(𝑋𝑗) = σ𝑚=1
𝑀 𝑉𝑎𝑟(𝑍𝑚), with 𝑀 = min(𝑛 − 1, 𝑝)

 σ𝑗=1
𝑝 1

𝑛
σ𝑖=1
𝑛 𝑥𝑖𝑗

2 = σ𝑚=1
𝑀 1

𝑛
σ𝑖=1
𝑛 𝑧𝑖𝑚

2 +
1

𝑛
σ𝑗=1
𝑝 σ𝑖=1

𝑛 (𝑥𝑖𝑗 −σ𝑚=1
𝑀 Φ𝑗𝑚𝑧𝑖𝑚)

2
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Proportion Variance Explained: continued

 Therefore, the PVE of the 𝑚th principal component is given by the positive 

quantity between 0 and 1

σ𝑖=1
𝑛 𝑧𝑖𝑚

2

σ
𝑗=1
𝑝 σ𝑖=1

𝑛 𝑥𝑖𝑗
2
=
σ𝑖=1
𝑛 (σ𝑗=1

𝑝
Φ𝑗𝑚𝑥𝑖𝑗)

2

σ
𝑗=1
𝑝 σ𝑖=1

𝑛 𝑥𝑖𝑗
2

 The PVEs sum to one. We sometimes display the cumulative PVEs
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More on PCA - How many principal components should we use?

 If we use principal components as a summary of our data, how many 

components are sufficient?

 No simple answer to this question, as cross-validation is not easy for this purpose

 The “scree plot” on the previous slide can be used as a guide: we look for an 

“elbow”

 Information criterion can be used instead, however, for generalized spike 

covariance model or in high dimensional setting the selection is quite challenge
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https://stats.stackexchange.com/questions/93845/how-to-perform-cross-validation-for-pca-to-determine-the-number-of-principal-com
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More on PCA - Scaling of the variables matters

 If the variables are in different units, scaling each to have standard deviation 

equal to one is recommended

 If they are in the same units, you might or might not scale the variables
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More on PCA – Uniqueness

 Each principal component loading vector is unique, up to a sign flip

 This means that two different software packages will yield the same principal component 

loading vectors although the signs of those loading vectors may differ

 The signs may differ because each principal component loading vector specifies a direction 

in 𝑝-dimensional space: flipping the sign has no effect as the direction does not change. 

Similarly, the score vectors are unique up to a sign flip, since the variance of 𝑍 is the same 

as the variance of −𝑍
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More on PCA – Connection with SVD and EVD

 Let the data matrix 𝑋 be a 𝑛 by 𝑝 data matrix

 The sample covariance matrix

𝑆 = Τ𝑋𝑇𝑋 𝑛 =

𝑖=1

𝑛

(𝑥𝑖 − ҧ𝑥)(𝑥𝑖 − ҧ𝑥)𝑇/𝑛

 Find a direction vector 𝑣1 ∈ 𝑅𝑝 and 𝑣1
𝑇𝑣1 = 1 such that the variance of the 

projected data is maximized

1

𝑛


𝑖=1

𝑛

(𝑥𝑖
𝑇𝑣1 − ҧ𝑥𝑇𝑣1)

2 = 𝑣1
𝑇𝑆𝑣1
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More on PCA – Connection with SVD and EVD

 To enforce the constraint, we introduce a  Lagrange multiplier denoted by λ1
and get the unconstrained maximization of 

𝑣1
𝑇𝑆𝑣1 + λ1(1 − 𝑣1

𝑇𝑣1) or maximized the Rayleigh quotient
𝑣𝑇𝑆𝑣

𝑣𝑇𝑣
 By setting the derivative with respect to 𝑣1 equal to zero, we see that this quantity will 

have a stationary point when 

𝑆𝑣1 = λ1𝑣1
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More on PCA – Connection with SVD and EVD

 𝑣1 must be an eigenvector of 𝑆, if we left-multiply by 𝑣1
𝑇 we get

𝑣1
𝑇𝑆𝑣1 = λ1

and so the variance will be a maximum when we set 𝑣1 equal to the eigenvector having the 

largest eigenvalue λ1. This eigenvector is known as the first principal component

 We can define additional principal components in an incremental fashion by 

choosing each new direction to be that which maximizes the projected variance 

amongst all possible directions orthogonal to those already considered.

 In a 𝑀-dimensional projection space, we now consider the optimal linear projection for which 

the variance of the projected data is maximized is defined by the 𝑀 eigenvectors 𝑣1, … , 𝑣𝑀 of 

the data covariance matrix S corresponding to the 𝑀 largest eigenvalues λ1, … , λ𝑀. 
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More on PCA – Connection with SVD and EVD

 If we collect eigenvectors and eigenvalues into matrix forms the connection 

with EVD
𝑆𝑝×𝑝𝑉𝑝×𝑝 = 𝑉𝑝×𝑝Λ𝑝×𝑝
𝑆𝑝×𝑝 = 𝑉𝑝×𝑝Λ𝑝×𝑝𝑉𝑝×𝑝

𝑇

 Connection with SVD

S =
𝑋𝑇𝑋

𝑛
=
𝑉𝐷𝑈𝑇𝑈𝐷𝑉𝑇

𝑛
= 𝑉

𝐷2

𝑛
𝑉𝑇 = 𝑉Λ𝑉𝑇

 Note 𝑋 = 𝑈𝐷𝑉𝑇

 Scores are  𝑋𝑉 = 𝑈𝐷
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Other Uses for Principal Components

 We saw in Chapter 6 that we can perform regression using the principal 

component score vectors as features

 In fact, many statistical techniques, such as regression, classification, and clustering, can be 

easily adapted to use the 𝑛 ×𝑀 matrix whose columns are the first 𝑀 ≪ 𝑝 principal 

component score vectors, rather than using the full n × p data matrix

 This can lead to less noisy results, since it is often the case that the signal (as opposed to 

the noise) in a data set is concentrated in its first few principal components!
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Missing Values and Matrix Completion

 Often datasets have missing values, which can be a nuisance. How should we 

proceed?

1. We could remove the rows that contain missing observations and perform our 

data analysis on the complete rows

 But this seems wasteful, and depending on the fraction missing

2. Alternatively, if 𝑥𝑖𝑗 is missing, then we could replace it by the mean of the 

𝑗th column (using the non-missing entries to compute the mean)

 Although this is a common and convenient strategy, often we can do better by exploiting 

the correlation between the variables
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Missing Values and Matrix Completion

 In practice, sometimes data is missing by necessity 

 For example, if we form a matrix of the ratings (on a scale from 1 to 5) that 𝑛 customers 

have given to the entire Netflix catalog of 𝑝 movies, then most of the matrix will be 

missing, since no customer will have seen and rated more than a tiny fraction of the catalog

 If we can impute the missing values well, then we will have an idea of what each customer 

will think of movies they have not yet seen

 We show how principal components can be used to impute the missing values, 

through a process known as matrix completion if the data is missing at random

 The complete matrix can then be used in a statistical learning method, such as 

linear regression or LDA
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Principal Components with Missing Values

 The first 𝑀 principal component score and loading vectors provide the “best” 

approximation to the data matrix 𝑋

 Now, some of the observations 𝑥𝑖𝑗 are missing. One can both impute the 

missing values and solve the principal component problem at the same time

min
𝐴∈𝑅𝑛×𝑀, 𝐵∈𝑅𝑝×𝑀

{ 

(𝑖,𝑗)∈𝑂

(𝑥𝑖𝑗 − 

𝑚=1

𝑀

𝑎𝑖𝑚𝑏𝑗𝑚)
2}

where 𝑂 is the set of all observed pairs of indices (𝑖, 𝑗), a subset of the possible 𝑛 ×
𝑝 pairs

 We can estimate a missing observation 𝑥𝑖𝑗 using 𝑥𝑖𝑗 = σ𝑚=1
𝑀 ො𝑎𝑖𝑚 𝑏𝑗𝑚

 We can (approximately) recover the 𝑀 principal component scores and loadings, as we did 

when the data were complete
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Example on USArrests data

 𝑝 = 4 and 𝑛 = 50 observations 

(states). We first standardized the 

data 

 We then randomly selected 20 of the 

50 states, and then for each of these 

we randomly set one of the four 

variables to be missing. Thus, 10% 

of the elements of the data matrix 

were missing

 We applied Algorithm 12.1 with 

𝑀 = 1 principal component
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Example on USArrests data

 Over 100 random runs of this experiment, the average correlation between the 

true and imputed values of the missing elements is 0.63, with a standard 

deviation of 0.11

 If we had simply computed ො𝑥𝑖𝑗 = 𝑧𝑖1Φ𝑗1, where 𝑧𝑖1 and Φ𝑗1 are elements of the first 

principal component score and loading vectors of the complete data. Using the complete 

data in this way results in an average correlation of 0.79 between the true and estimated 

values for these 20 elements, with a standard deviation of 0.08

 Thus, our imputation method does worse than the method that uses all of the data (0.63 ±
0.11 versus 0.79 ± 0.08), but its performance is still pretty good
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Example on USArrests data
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Recommender Systems

 Netflix and Amazon use data about the content that a customer has viewed in 

the past to suggest other content for the customer

 Some years back, Netflix had customers rate each movie that they had seen 

with a score from 1–5. This resulted in a very big 𝑛 × 𝑝 matrix for which the 

(𝑖, 𝑗) element is the rating given by the 𝑖th customer to the 𝑗th movie

 Netflix needed a way to impute the missing values of this data matrix

 The key idea is as follows: the set of movies that the 𝑖th customer has seen will overlap 

with those that other customers have seen. Furthermore, some of those other customers will 

have similar movie preferences to the 𝑖th customer

 By applying Algorithm 12.1, we can predict the 𝑖th customer’s rating for the 𝑗th movie

 We can interpret the 𝑀 components in terms of “cliques” and “genres”
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Recommender Systems
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Manifold Learning

 A M-dimensional manifold is a part of an p-dimensional space (where M < p) 

that locally resembles a M-dimensional hyperplane 

 In the case of the Swiss roll, M = 2 and p= 3: it locally resembles a 2D plane, but it is bent 

and twisted in the third dimension

 Simply projecting onto a plane would squash different layers of the Swiss roll

 Many dimensionality reduction algorithms work by modeling the manifold on 

which the training instances lie; this is called Manifold Learning
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Manifold Learning

 Make sure the same scale is used over all features

 Because manifold learning methods are based on a nearest-neighbor search, the algorithm 

may perform poorly otherwise

40
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t-SNE (t-distributed Stochastic Neighbor Embedding)

 t-SNE is popular manifold learning method that is specialized for visualization 

and EDA

1. It is a statistical method for visualizing high-dimensional data (𝑥𝑖) by giving each data 

point a location in a two or three-dimensional map (𝑦𝑖)

2. Is converts affinities of data points to probabilities and tends to preserve topology that 

similar objects are modeled by nearby points and dissimilar objects are modeled by 

distant points

3. It is particularly sensitive to local structure and can revealing the structure at many scales 

or data lie on several manifolds on a single map

4. However, the global structure is not explicitly preserved and we should use it with 

caution for downstream analysis
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Stochastic Neighbor Embedding (SNE)

 Previous linear or non-linear dimensionality reduction methods have a fixed 

assignment for a data point in the high-dimensional space

 SNE aims to best capture neighborhood identity by considering the probability that one 

point is the neighbor of all other points. Formally, it defines 𝑛 × 𝑛 similarity matrix 𝑃 in 

the high dimensional space whose entries are

𝑝𝑗|𝑖 =
𝑒𝑥𝑝 −

(𝑥𝑖−𝑥𝑗)
2

2𝜎𝑖
2

σ𝑘≠𝑖 𝑒𝑥𝑝 −
(𝑥𝑖−𝑥𝑘)

2

2𝜎𝑖
2

, 𝑝𝑖|𝑖 = 0 and σ𝑗 𝑝𝑗|𝑖 = 1

 From the definition of 𝑃, note that SNE focuses on local structure because farther points result in 

smaller 𝑝𝑗|𝑖 and closer points result in greater 𝑝𝑗|𝑖

and 𝑛 × 𝑛 similarity matrix 𝑄 in the low dimensional space whose entries are

𝑞𝑗|𝑖 =
𝑒𝑥𝑝 −(𝑦𝑖 − 𝑦𝑗)

2

σ𝑘≠𝑖 𝑒𝑥𝑝 −(𝑦𝑖 − 𝑦𝑘)
2
, 𝑞𝑖|𝑖 = 0
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Stochastic Neighbor Embedding

 𝑃𝑖 = {𝑝1|𝑖 , 𝑝2|𝑖 , … , 𝑝𝑛|𝑖} and 𝑄𝑖 = {𝑞1|𝑖 , 𝑞2|𝑖 , … , 𝑞𝑛|𝑖} are the distributions on 

the neighbors of datapoint 𝑖. The cost function that SNE want to minimize is 

the Kullback-Leibler divergence over 𝑃 and 𝑄

𝐶 =

𝑖

𝐾𝐿 𝑃𝑖||𝑄𝑖 =

𝑖



𝑗

𝑝𝑗|𝑖 log
𝑝𝑗|𝑖

𝑞𝑗|𝑖

 Using far away points to represent similar object will induce more cost than using nearby 

points to represent dissimilar objects (𝑞𝑗|𝑖 = 0.2 for 𝑝𝑗|𝑖 = 0.8, 𝑐𝑜𝑠𝑡 = 1.11. 𝑞𝑗|𝑖 =0.8 for 

𝑝𝑗|𝑖 =0.2, 𝑐𝑜𝑠𝑡 = −0.277), thus, SNE prefer to preserve local structure

 The gradient of 𝐶 is 
𝛿𝐶

𝛿𝑦𝑖
= 2

𝑗

𝑦𝑖 − 𝑦𝑗 𝑝𝑗|𝑖 − 𝑞𝑗|𝑖 + 𝑝𝑖|𝑗 − 𝑞𝑖|𝑗
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The problem of SNE

 SNE suffers from the "crowding problem". Intuitively, there is less space in a 

lower dimension to accommodate moderately distant data points originally in 

higher dimension
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t-distribution

 𝑡-SNE use 𝑡 distribution rather than a 

Gaussian to compute the similarity in the 

low-dimensional space to alleviate the 

crowding problem

𝑞𝑖𝑗 =
1 + (𝑦𝑖 − 𝑦𝑗)

2 −1

σ𝑘≠𝑖 1 + (𝑦𝑘 − 𝑦𝑖)
2 −1

 The heavy tails of the 𝑡 kernel allow 

dissimilar 𝑥𝑖 and 𝑥𝑗 to be modeled by 𝑦𝑖
and 𝑦𝑗 that are far apart

 It also alleviate the outlier problem
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Symmetry

 𝑡-SNE has a symmetrized version of the SNE cost function with simpler 

gradients 

 In SNE, 𝑝𝑗|𝑖 ≠ 𝑝𝑖|𝑗 due to perplexity (perplexity is proportional to 𝜎)

 Thus, in t-SNE 𝑝𝑖𝑗 is defined instead as 

𝑝𝑖𝑗 =
𝑝𝑗|𝑖 + 𝑝𝑖|𝑗

2𝑁
, 𝑝𝑖𝑖 = 0 and 

𝑖,𝑗

𝑝𝑖𝑗 = 1

 The gradient of the cost function is:
𝛿𝐶

𝛿𝑦𝑖
= 4σ𝑗=1,𝑗≠𝑖

𝑛 𝑝𝑖𝑗 − 𝑞𝑖𝑗 𝑦𝑖 − 𝑦𝑗 1 + (𝑦𝑖 − 𝑦𝑗)
2 −1

= 4 σ𝑗≠𝑖 𝑝𝑖𝑗𝑞𝑖𝑗𝑍 𝑦𝑖 − 𝑦𝑗 − σ𝑗≠𝑖 𝑞𝑖𝑗
2 𝑍 𝑦𝑖 − 𝑦𝑗

𝑍 =

𝑗≠𝑖

1 + (𝑦𝑖 − 𝑦𝑗)
2 −1
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t-Stochastic Neighbor Embedding

 Input: Dataset 𝑋 = {𝑥1, … , 𝑥𝑛} ∈ 𝑅𝑝, perplexity 𝑘, exaggeration parameter 𝛼, 

step size ℎ > 0, number of rounds 𝑇 ∈ 𝑁

1. Initialize 𝑦1
(0)
, 𝑦2

(0)
, … , 𝑦𝑛

(0)
from the uniform distribution on [−0.01,0.01]2

2. For 𝑡 = 0 to 𝑇 − 1 do

𝑍(𝑡) ← 

𝑖,𝑗,𝑖≠𝑗

1 + (𝑦𝑖
(𝑡)

− 𝑦𝑗
(𝑡)
)2

−1

𝑦𝑖
(𝑡+1)

← 𝑦𝑖
(𝑡)

+ ℎ
𝑗=1,𝑗≠𝑖

𝑛

𝛼𝑝𝑖𝑗 − 𝑞𝑖𝑗
(𝑡)

𝑍(𝑡) 𝑦𝑖
(𝑡)

− 𝑦𝑗
(𝑡)

𝑖 = 1…n

3. Output 2D embedding Y = {𝑦1
(T)
, … , 𝑦𝑛

(T)
} ∈ 𝑅2
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t-Stochastic Neighbor Embedding
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https://dash.gallery/dash-tsne/


Parameters

 There are five parameters that control the optimization of t-SNE and therefore 

possibly the quality of the resulting embedding:

 Perplexity 𝑘
 𝑘 is effectively the number of nearest neighbors t-SNE considers when generating the 

conditional probabilities. Larger perplexities lead to more nearest neighbors and less 

sensitive to small structures and generally, is chosen to take values between 5 and 50

2. Early exaggeration factor

 The optimization consists of two phases: the early exaggeration phase and the final 

optimization. During early exaggeration, the joint probabilities in the original space will be 

artificially increased by multiplication with a given factor 

 This encourages the algorithm to focus on modeling large 𝑝𝑖𝑗 by fairly large 𝑞𝑖𝑗 which will 

improve the convergence speed and larger factors result in larger gaps between natural 

clusters in the data
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Parameters

3. Learning rate

 If it is too low gradient descent will get stuck in a bad local minimum. If it is too high the 

KL divergence will increase during optimization. A heuristic suggested in opt-SNE is to set 

the learning rate to the sample size divided by the early exaggeration factor

4. Maximum number of iterations

 Usually high enough and does not need any tuning

5. Angle (not used in the exact method, but use in the Barnes-Hut t-SNE)

 Tradeoff between performance and accuracy. Larger angles imply that we can approximate 

larger regions by a single point, leading to better speed but less accurate results

 Make sure the same scale is used over all features. Because manifold learning 

methods are based on a nearest-neighbor search
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https://github.com/omiq-ai/Multicore-opt-SNE
https://lvdmaaten.github.io/publications/papers/JMLR_2014.pdf


Caveats

 First, the perplexity parameter needs to be chosen carefully. Varying perplexity 

can give drastically different visualizations that show different structures

 A more direct way to think about perplexity is that it is the continuous analogy to the 𝑘
number of nearest neighbors for which we will preserve distances
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https://distill.pub/2016/misread-tsne/
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 Coordinates after embedding have no meaning. The global structure is not 

preserve and the results obtain in each run may be different

 This problem is mitigated by initializing points with PCA (using init='pca')

 The density also not preserved
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https://www.nature.com/articles/s41467-019-13056-x


Caveats

 t-SNE does not work well for general dimensionality problem where the 

embedded dimension is greater than 2D or 3D

 O(𝑀𝑛2) computational complexity. But can be reduced to 𝑂(𝑀𝑛 log 𝑛) using Barnes-Hut 

t-SNE which only works for the target dimensionality is smaller than 3 and dense dataset. 

The flt-tsne or UMAP can be use to give linear scalability

 We can also add new data point into the embedding by parametric t-SNE 

 There are more and more theoretical guarantee for t-SNE. See here and here

 t-SNE is generally very good at capture local structure and best tool for visualization

 Noise may appear to have some structure and cluster may not discover by t-SNE 

 Generally, we do not use t-SNE for clustering purpose

 See here for more experiments

 UMAP on the other hand can be used as a preprocessing methods
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https://opentsne.readthedocs.io/en/latest/tsne_algorithm.html
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https://umap-learn.readthedocs.io/en/latest/clustering.html
https://jlmelville.github.io/smallvis/


Cluster analysis

 Clustering refers to a very broad set of techniques for finding subgroups, or 

clusters, in a data set. We seek a partition of the data into distinct groups so that 

the observations within each group are quite similar to each other

1. Once a dataset has been clustered, it is possible to measure each instance’s affinity with 

each cluster which reduce to 𝑘 dimensional space (feature/representation learning)

2. We can cluster observations on the basis of the features in order to identify subgroups 

among the observations, or we can cluster features on the basis of the observations in order 

to discover subgroups among the features (feature clustering)

3. For semi-supervised learning: if you only have a few labels, you could perform clustering 

and propagate the labels to all the instances in the same cluster

4. For anomaly detection: any instance that has a low affinity to all the clusters is likely to be 

an anomaly
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https://en.wikipedia.org/wiki/Cluster_analysis


Clustering analysis - Example

 For instance, suppose that we have a set of 𝑛 observations, each with 𝑝
features

 The 𝑛 observations could correspond to tissue samples for patients with breast 

cancer, and the 𝑝 features could correspond to measurements collected for each 

tissue sample; these could be clinical measurements, such as tumor stage or grade, 

or they could be gene expression measurements

 We may have a reason to believe that there is some heterogeneity among the 𝑛
tissue samples; for instance, perhaps there are a few different unknown subtypes of 

breast cancer

 Clustering could be used to find these subgroups. This is an unsupervised problem 

because we are trying to discover structure—in this case, distinct clusters—on the 

basis of a data set
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Clustering vs PCA

 Both clustering and PCA seek to simplify the data via a small number of 

summaries, but their mechanisms are different:

 PCA looks for a low-dimensional representation of the observations that explains a good 

fraction of the variance

 Clustering looks for homogeneous subgroups among the observations

 In clustering, to make the affinity concrete, we must define what it means for 

two or more observations to be similar or different

 Indeed, this is often a domain-specific consideration that must be made based on 

knowledge of the data being studied

 Metric learning may be helpful in this case
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http://contrib.scikit-learn.org/metric-learn/introduction.html


Good EDA clustering algorithm

1. Don’t be wrong: If you are doing EDA you are trying to learn and gain intuitions about 

your data. In that case it is far better to get no result at all than a result that is wrong. This 

means a good EDA clustering algorithm needs to conservative in it’s clustering

2. Intuitive Parameters: If you know little about your data it can be hard to determine what 

value or setting a parameter should have. This means parameters need to be intuitive 

enough that you can hopefully set them without having to know a lot about your data

3. Stable Clusters: If you run the algorithm twice with a different random initialization, you 

should expect to get roughly the same clusters back. If you are sampling your data, taking a 

different random sample shouldn’t change much. If you vary the clustering algorithm 

parameters you want the clustering to change in a somewhat stable predictable fashion

4. Performance: You can sub-sample, but ultimately you need a clustering algorithm that can 

scale to large data sizes. A clustering algorithm isn’t much use if you can only use it if you 

take such a small sub-sample that it is no longer representative of the data at large!
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https://scikit-learn.org/stable/modules/clustering.html


Three clustering methods

1. In 𝐾-means clustering, we seek to partition the observations into a pre-

specified number of clusters

2. In hierarchical clustering, we do not know in advance how many clusters we 

want; in fact, we end up with a tree-like visual representation of the 

observations, called a dendrogram, that allows us to view at once the 

clustering obtained for each possible number of clusters, from 1 to 𝑛

3. In DBSCAN, we do not know in advance how many clusters we want. In 

addition, it doesn’t require that every point be assigned to a cluster and hence 

doesn’t partition the data, but instead extracts the ‘dense’ clusters and leaves 

sparse background classified as ‘noise’
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Details of K-means clustering

 A simulated data set with 150 observations in 2-dimensional space. The color 

of each observation indicates the cluster to which it was assigned using the 𝐾-

means clustering algorithm

 The cluster labels were not used in clustering; instead, they are the outputs of 

the clustering procedure
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Details of K-means clustering

 Let 𝐶1, … , 𝐶𝐾 denote sets containing the indices of the observations in each 

cluster. These sets satisfy two properties:

1. 𝐶1 ∪ 𝐶2 ∪⋯∪ 𝐶𝐾 = 1,… , 𝑛 . In other words, each observation belongs to at 

least one of the K clusters

2. 𝐶𝑘 ∩ 𝐶𝑘′ = 0 for all 𝑘 ≠ 𝑘′. In other words, the clusters are non-overlapping: 

no observation belongs to more than one cluster (In contrast to fuzzy 

clustering)

 For instance, if the 𝑖th observation is in the 𝑘th cluster, then 𝑖 ∈ 𝐶𝑘
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https://en.wikipedia.org/wiki/Fuzzy_clustering


Details of K-means clustering: continued

 The idea behind K-means clustering is that a good clustering is one for which 

the within-cluster variation is as small as possible

 The within-cluster variation for cluster 𝐶𝑘 is a measure 𝑊(𝐶𝑘) of the amount 

by which the observations within a cluster differ from each other

 Hence we want to solve the problem

min
𝐶1,…,𝐶𝑘

{

𝑘=1

𝐾

W(𝐶𝑘)}

 In words, this formula says that we want to partition the observations into 𝐾
clusters such that the total within-cluster variation, summed over all 𝐾 clusters, 

is as small as possible
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How to define within-cluster variation?

 Typically we use Euclidean distance

𝑊(𝐶𝑘)=
1

|𝐶𝑘|
σ𝑖,𝑖′∈𝐶𝑘

σ𝑗=1
𝑝

(𝑥𝑖𝑗 − 𝑥𝑖′𝑗)
2,

Where |𝐶𝑘| denotes the number of observations in the 𝑘th cluster

 Combining previous two equation gives the optimization problem which 

minimize the following objective function that defines 𝐾-means clustering,

min
𝐶1,…,𝐶𝑘

{

𝑘=1

𝐾
1

|𝐶𝑘|


𝑖,𝑖′∈𝐶𝑘



𝑗=1

𝑝

(𝑥𝑖𝑗 − 𝑥𝑖′𝑗)
2}

 There are 𝐾𝑛 ways to partition 𝑛 observation into 𝐾 clusters!

 Fortunately, a very simple algorithm can be shown to provide a local optimum
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Details of K-means clustering
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Properties of the Algorithm

 This algorithm is guaranteed to decrease the value of the objective function at 

each step. Note that (exercise 1)

1

|𝐶𝑘|


𝑖,𝑖′∈𝐶𝑘



𝑗=1

𝑝

(𝑥𝑖𝑗 − 𝑥𝑖′𝑗)
2 = 2 

𝑖 ∈𝐶𝑘



𝑗=1

𝑝

(𝑥𝑖𝑗 − ҧ𝑥𝑘𝑗)
2

Where ҧ𝑥𝑘𝑗 =
1

|𝐶𝑘|
σ𝑖∈𝐶𝑘

𝑥𝑖𝑗 is the mean for feature 𝑗 in cluster 𝐶𝑘

 However it is not guaranteed to give the global minimum

 It is close related to Gaussian mixture model
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Example
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https://www.naftaliharris.com/blog/visualizing-k-means-clustering/


Details of Previous Figure

 The progress of the 𝐾-means algorithm with 𝐾 = 3

 Top left: The observations are shown

 Top center: In Step 1 of the algorithm, each observation is randomly assigned 

to a cluster

 Top right: In Step 2(a), the cluster centroids are computed. These are shown as 

large colored disks. Initially the centroids are almost completely overlapping 

because the initial cluster assignments were chosen at random

 Bottom left: In Step 2(b), each observation is assigned to the nearest centroid

 Bottom center: Step 2(a) is once again performed, leading to new cluster 

centroids

 Bottom right: The results obtained after 10 iterations
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Example: different starting values and different 𝐾
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Details of Previous Figure

 𝐾-means clustering performed six times on the data from previous figure with 

𝐾 = 3, each time with a different random assignment of the observations in 

Step 1 of the 𝐾-means algorithm

 Above each plot is the value of the objective function

 Three different local optima were obtained, one of which resulted in a smaller 

value of the objective and provides better separation between the clusters

 Those labeled in red all achieved the same best solution, with an objective 

value of 235.8
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Hierarchical Clustering

 𝐾-means clustering requires us to pre-specify the number of clusters 𝐾. This 

can be a disadvantage

 Hierarchical clustering is an alternative approach which does not require that 

we commit to a particular choice of 𝐾
 In this section, we describe bottom-up or agglomerative clustering (cf. divisive clustering). 

This is the most common type of hierarchical clustering, and refers to the fact that a 

dendrogram is built starting from the leaves and combining clusters up to the trunk

 It can also be used as an effective feature clustering (dimension reduction) method
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https://chih-ling-hsu.github.io/2017/09/01/Divisive-Clustering
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.FeatureAgglomeration.html


Agglomerative (Hierarchical or bottom up) Clustering

 Start with each point in it’s own cluster and then, for each cluster, use some 

criterion to choose another cluster to merge with. Do this repeatedly until you 

have only one cluster and you get a hierarchy, or binary tree, of clusters 

branching down to the last layer which has a leaf for each point in the dataset

71



An Example

 45 observations generated in 2-

dimensional space. In reality there 

are three distinct classes, shown in 

separate colors

 However, we will treat these class 

labels as unknown and will seek to 

cluster the observations in order to 

discover the classes from the data
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Application of hierarchical clustering
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Details of previous figure

 Left: Dendrogram obtained from hierarchically clustering the data from 

previous slide, with complete linkage and Euclidean distance

 Center: The dendrogram from the left-hand panel, cut at a height of 9 

(indicated by the dashed line). This cut results in two distinct clusters, shown in 

different colors

 Right: The dendrogram from the left-hand panel, now cut at a height of 5. This 

cut results in three distinct clusters, shown in different colors

 One single dendrogram can be used to obtain any number of clusters. In 

practice, people often look at the dendrogram and select by eye a sensible 

number of clusters, based on the heights of the fusion and the number of 

clusters desired
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Assumption behind Hierarchical Clustering

 The term hierarchical refers to the fact that clusters obtained by cutting the 

dendrogram at a given height are necessarily nested within the clusters 

obtained by cutting the dendrogram at any greater height

 Suppose that our observations correspond to a group of men and women, evenly split 

among Americans, Japanese, and French. We can imagine a scenario in which the best 

division into two groups might split these people by gender, and the best division into three 

groups might split them by nationality 

 In this case, the true clusters are not nested, in the sense that the best division into three 

groups does not result from taking the best division into two groups and splitting up one of 

those groups
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Another Example

 An illustration of how to properly interpret a 

dendrogram with nine observations in two-dimensional 

space. The raw data on the bottome was used to 

generate the dendrogram on the top

 Observations 5 and 7 are quite similar to each other, as are 

observations 1 and 6

 However, observation 9 is no more similar to observation 2 

than it is to observations 8, 5, and 7, even though observations 

9 and 2 are close together in terms of horizontal distance

 This is because observations 2, 8, 5; and 7 all fuse with 

observation 9 at the same height, approximately 1.8
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Merges in previous example
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Hierarchical Clustering

 How did we determine that the cluster {5, 7} should be fused with the cluster 

{8}?
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Types of Linkage

Linkage Description

Complete Maximal intercluster dissimilarity (distance). Compute all pairwise dissimilarities 

between the observations in cluster A and the observations in cluster B, and record 

the largest of these dissimilarities

Single Minimal intercluster dissimilarity. Compute all pairwise dissimilarities between the 

observations in cluster A and the observations in cluster B, and record the smallest

of these dissimilarities

Average Mean intercluster dissimilarity. Compute all pairwise dissimilarities between the 

observations in cluster A and the observations in cluster B, and record the average of 

these dissimilarities

Centroid Dissimilarity between the centroid for cluster A (a mean vector of length 𝑝) and the 

centroid for cluster B. Centroid linkage can result in undesirable inversions

Ward Minimizes the sum of squared differences within all clusters. It is a variance-

minimizing approach and in this sense is similar to the k-means objective function
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https://jbhender.github.io/Stats506/F18/GP/Group10.html


Types of Linkage
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Types of Linkage

 Agglomerative cluster has a “rich get 

richer” behavior that leads to uneven 

cluster sizes

 Single linkage seems like the worst strategy, 

and Ward gives the most regular sizes

 However, the affinity cannot be varied 

with Ward, thus for non Euclidean metrics, 

average linkage is a good alternative

 Single linkage, while not robust to noisy 

data, can be computed very efficiently. It  

can also perform well on non-globular 

data
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Density-based spatial clustering of applications with noise

(DBSCAN) (OPTICS, HDBSCAN)

 DBSCAN is a density based algorithm. It is also the actual clustering algorithm: 

it doesn’t require that every point be assigned to a cluster and hence doesn’t 

partition the data, but instead extracts the ‘dense’ clusters and leaves sparse 

background classified as ‘noise’

 A point p is a core point if at least minPts points are within distance ε of it 

(including p). Find the reachable points and clustered all points that are 

reachable
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DBSCAN

1. Picking an arbitrary point and if there are more than minPts points within a 

distance ε from the point, we consider all of them to as a "cluster". We then 

expand that cluster by checking all of the new points and seeing if they have 

more than minPts points within a distance ε, growing the cluster recursively
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2. Eventually, we run out of points to add 

to the cluster. We then pick a new 

arbitrary point and repeat the process

3. It's possible that a point we pick has 

fewer than minPts points in its 𝜀 ball, 

and is also not a part of any other cluster. 

Then it is a  "noise point" not belonging 

to any cluster

https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/


DBSCAN

 DBSCAN can be seen as special (efficient) variant of spectral clustering:

1. Clusters don’t need to be globular, and won’t have noise lumped in; varying density 

clusters may cause problems 

2. DBSCAN is stable across runs (and to some extent subsampling if you re-parameterize 

well); stability over varying 𝜀 and 𝑚𝑖𝑛𝑃𝑡𝑠 is not so good

3. DBSCAN can be very efficient; few clustering algorithms can tackle datasets as large as 

DBSCAN can

4. 𝜀 is a distance value. In practice, however, this isn’t an especially intuitive parameter, nor 

is it easy to get right
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https://en.wikipedia.org/wiki/Spectral_clustering


Hierarchical DBSCAN (HDBSCAN)

 The goal was to allow varying density clusters. It extends DBSCAN by 

converting it into a hierarchical clustering algorithm
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https://axk51013.medium.com/2021%E5%B9%B4%E8%B3%87%E6
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Hierarchical DBSCAN (HDBSCAN)

 Instead of taking an epsilon value 

and minPts, we have a new 

parameter min_cluster_size which is 

used to determine whether points 

are ‘falling out of a cluster’ or 

splitting to form two new clusters. 

This trades an unintuitive parameter 

for one that is not so hard to choose 

for EDA 
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Choice of Dissimilarity Measure

 So far have used Euclidean distance

 An alternative is correlation-based distance which considers two observations 

to be similar if their features are highly correlated

 Correlation-based distance focuses on the shapes of observation profiles rather than their 

magnitudes

 More metrics
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Choice of Dissimilarity Measure

 Consider an online retailer interested in clustering shoppers based on 

their past shopping histories

 The data takes the form of a matrix where the rows are the shoppers and the 

columns are the items available for purchase; the elements of the data matrix 

indicate the number of times a given shopper has purchased a given item 

 If Euclidean distance is used, then shoppers who have bought very few items 

overall will be clustered together. This may not be desirable. On the other hand, if 

correlation-based distance is used, then shoppers with similar preferences will be 

clustered together

88



Scaling of the variables matters
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Practical issues - Validating the Clusters Obtained

 Any time clustering is performed on a data set we will find clusters. But we 

really want to know whether the clusters that have been found represent true 

subgroups in the data, or whether they are simply a result of clustering the 

noise 

 For instance, if we were to obtain an independent set of observations, then would those 

observations also display the same set of clusters?

 This is a hard question to answer. There exist a number of techniques for 

assigning a 𝑝-value to a cluster in order to assess whether there is more 

evidence for the cluster than one would expect due to chance. However, there 

has been no consensus on a single best approach

 More details can be found in ESL
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https://stats.stackexchange.com/questions/723/how-can-i-test-whether-my-clustering-of-binary-data-is-significant


Practical issues

 Both 𝐾-means and hierarchical clustering will assign each observation to a 

cluster. However, sometimes this might not be appropriate

 Suppose a small subset of the observations are quite different from each other and from all 

other observations. The clusters found may be heavily distorted due to the presence of 

outliers that do not belong to any cluster 

 Mixture models or DBSCAN are an attractive approach for accommodating the presence 

of such outliers

 Clustering methods generally are not very robust to perturbations to the data. 

For instance, suppose that we cluster 𝑛 observations, and then cluster the 

observations again after removing a subset of the 𝑛 observations at random. 

One would hope that the two sets of clusters obtained would be quite similar, 

but often this is not the case!
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Practical issues

 Clustering can be a very useful and valid statistical tool if used properly 

 We mentioned that small decisions in how clustering is performed

 Such as how the data are standardized and what type of linkage is used, can have a large 

effect on the results 

 Therefore, we recommend performing clustering with different choices of these parameters, 

and looking at the full set of results in order to see what patterns consistently emerge

 We must be careful about how the results of a clustering analysis are reported. These 

results should not be taken as the absolute truth about a data set. Rather, they should 

constitute a starting point for the development of a scientific hypothesis and further study, 

preferably on an independent data set
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Conclusions

 Unsupervised learning is important for understanding the variation and 

grouping structure of a set of unlabeled data, and can be a useful pre-processor 

for supervised learning  

 It is intrinsically more difficult than supervised learning because there is no 

gold standard (like an outcome variable) and no single objective (like test set 

accuracy)

 It is an active field of research, with many recently developed tools. See The 

Elements of Statistical Learning, chapter 14
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Conclusions

 Going further

 Manifold learning

 Self-supervised learning

 Deep learning

 Graphical models

 Bayesian data analysis

 …

 Practical topics

 Data cleaning, feature engineering

 Database and SQL

 Model serving …

 Pretrained and transfer learning

 High-performance and distributed computing
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Appendix
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Additional topics

 Tensor decomposition

 http://tensorly.org/stable/index.html

 Manifold learning

 https://scikit-learn.org/stable/modules/manifold.html

 Spectral clustering 

 https://jlmelville.github.io/smallvis/spectral.html

 Mixture models

 https://cs229.stanford.edu/syllabus.html

 https://cs229.stanford.edu/notes2021fall/cs229-notes7b.pdf

 Variational Bayesian Gaussian Mixture
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http://tensorly.org/stable/index.html
https://scikit-learn.org/stable/modules/manifold.html
https://jlmelville.github.io/smallvis/spectral.html
https://cs229.stanford.edu/syllabus.html
https://cs229.stanford.edu/notes2021fall/cs229-notes7b.pdf
https://scikit-learn.org/stable/modules/mixture.html#variational-bayesian-gaussian-mixture


Self-supervised learning

 https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/bert_v8.pdf
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https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/bert_v8.pdf


More on PCA – Connection with SVD and EVD

 In practice, we will often scale data before PCA 

 Whiten data matrix (identity covariance matrix)

 XVΛ−1/2

 ZCA (Close to original data (often not reduce dimension))

 XVΛ−1/2𝑉𝑇
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Perplexity, a smooth measure of the # of neighbors

 To choose the appropriate 𝜎𝑖
2, SNE performs a binary search for the value of 𝜎𝑖

that makes the entropy of the distribution over neighbors equal to log2(𝑘), 
where 𝑘 is the hyper-parameter perplexity or the effective number of local 

neighbors. The perplexity is defined as:

𝑘 = 2𝐻(𝑃𝑖),where 𝐻 𝑃𝑖 = −σ𝑗 𝑝𝑗|𝑖 log2 𝑝𝑗|𝑖

 Another consequence is that since the Gaussian kernel is used, the probability of being a 

neighbor decreases sharply for any point 𝑥𝑗 that lies outside of the neighborhood of a point 

𝑥𝑖, and the neighborhood is determined exactly by 𝜎𝑖
2
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Mean shift

 If you don’t want to have to specify the number of clusters. It is centroid based, 

like K-Means, but can return clusters instead of a partition

 The underlying idea of the Mean Shift algorithm is that there exists some 

probability density function from which the data is drawn, and tries to place 

centroids of clusters at the maxima of that density function

 It approximates this via kernel density estimation techniques, and the key 

parameter is then the bandwidth of the kernel used
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Mean shift

1. We begin with a circular sliding window centered at a point 𝑥𝑖 (randomly 

selected) and having radius 𝑟 as the kernel.

2. Given a candidate centroid 𝑥𝑖 for iteration 𝑡, the candidate is updated 

according to the following equation:

1. The means are shifted to the high density region 

3. We continue shifting the sliding window according to the mean until there is 

no direction at which a shift can accommodate more points inside the kernel

4. This process of steps 1 to 3 is done with many sliding window
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Example
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https://medium.com/temp08050309-devpblog/cv-7-segmentation-as-clustering-k-means-

mixture-of-gaussians-mean-shift-fe94d39bd2fc

https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-

a36d136ef68

https://medium.com/temp08050309-devpblog/cv-7-segmentation-as-clustering-k-means-mixture-of-gaussians-mean-shift-fe94d39bd2fc
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68


Clustering for categorical data

 Cluster using e.g., k-means or HDBSCAN, based on only the continuous 

features!

 Encode the categorical data before clustering with e.g., k-means or HDBSCAN

 Use k-prototypes to directly cluster the mixed data

 See here

 Use factor analysis of mixed data to reduce the mixed data to a set of derived 

continuous features which can then be clustered
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https://github.com/nicodv/kmodes
https://www.nature.com/articles/s41598-021-83340-8
https://github.com/MaxHalford/prince#factor-analysis-of-mixed-data-famd


Clustering as a preprocessing method

104

Longitude Latitude Cluster D_C0 … D_C3

-93.619 42.054 3 1.25 5.24

-93.619 42.053 3 3.56 3.33

-93.638 42.060 1 5.21 0.89

-93.602 41.988 0 7.83 4.31

 Clustering can be an efficient approach to 

dimensionality reduction, in particular as a 

preprocessing step before a supervised learning 

algorithm

 Cluster labels as a feature

 The motivating idea for adding cluster labels is 

that the clusters will break up complicated 

relationships across features into simpler 

chunks. Our model can then just learn the 

simpler chunks one-by-one instead having to 

learn the complicated whole all at once

 Distance to cluster centers can also be good 

features

 Feature agglomeration by pooling function



Clustering for semi-supervised learning

 Another use case for clustering is in semi-supervised learning, when we have 

plenty of unlabeled instances and very few labeled instances

 We can first cluster all the data points and ask for the label of the images that are most 

close to the cluster center

 Using this images to train classifier may be much better than random instances 

 We can also propagated the labels to all the other instances in the same cluster. This is 

called label propagation
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Practical issues

 Should the observations or features first be standardized in some way? For 

instance, maybe the variables should be centered to have mean zero and scaled 

to have standard deviation one. What dissimilarity measure should be used?

 In the case of hierarchical clustering,

 What type of linkage should be used?

 How many clusters to choose? (in both 𝐾-means or hierarchical clustering). 

Difficult problem. No agreed-upon method. See Elements of Statistical 

Learning, chapter 13 for more details
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